VDEC設立20周年記念行事 東京大学武田先端知ビル、2017年1月20日

スピントロニクス素子と集積回路応用

<u>大野英男</u>

東北大学 電気通信研究所

東北大学省エネルギー・スピントロニクス集積化システムセンター 東北大学スピントロニクス学術連携研究教育センター 東北大学国際集積エレクトロニクス研究開発センター 東北大学原子分子材料科学高等研究機構

Tetsuo Endoh, Takahiro Hanyu, Shunsuke Fukami, Shoji Ikeda, Hideo Sato, Shun Kanai, Fumihiro Matsukura and the CSIS team

Work supported in part by the FIRST Program from JSPS, ImPACT from JST, and by the R & D for Next-Generation Information Technology of MEXT

http://www.csis.tohoku.ac.jp/

RIF

Current Working Memories

DRAM: dense, 6F² SRAM: fast, 200F²

Volatile

Nonvolatile memory that is

- scalable
- fast
- virtually infinite endurance
- back-end-of-line compatible
- low resistance

Two versus Three terminal: operation window

 ◆ Three-terminal: Different READ and WRITE current path
> High-speed operation, Simple and small-area peripheral circuits ← Wide waveform tolerance owing to the large operation window
> Long lifetime ← Much less stress on tunnel barrier
> Low error rate ← No read disturbance, overdrive possible

TDDB : Time-dependent dielectric breakdown

• EM : Electromigration

2 terminal device

Magnetic Tunnel Junction (Spin-transfer torque)

 I_{c0} and $\Delta = E/k_B T$

perpendicular

$$E = K_{eff}V$$
$$I_{C0} = \frac{2\alpha\gamma e}{\mu_B g} \left(K_{eff}V\right)$$
$$\propto \alpha E$$

$$K_{eff} = K_{eff}$$

Perpendicular MgO-CoFeB MTJ

S. Ikeda et al., Nature Mat. 9, 721 (2010)

 $E/k_{\rm B}T$

H. Sato et al., Appl. Phys. Lett. 105, 062403 (2014)

STT-MRAM

PUBLIC RELEASE: 16-MAY-2016

New technology reduces 30 percent chip area of STT-MRAM while increasing memory bit yield by 70 percent

H. Koike et al. IMW2016

Everspin starts sampling 256Mb ST-MRAM chips, plans 1Gb

chips by the end of 2016

Apr 15, 2016 EverSpin MRAM production STT-MRAM

Everspin to show world's fastest SSD

Non-volatile RAM -- NVRAM for short -- is the Next Big Thing in digital storage. Everspin has announced that the industry's first Perpendicular Magnetic Tunnel Junction chip is now shipping. The company will demo the worlds's fastest SSD using it next week.

IBM and Samsung achieve breakthrough on flash killer for wearables, mobile devices

Computerworld | Jul 12, 2016 1:18 PM PT

Qualcomm, GlobalFoundries, TSMC, TDK Headway, Toshiba, Hynix, Avalanche, ... TEL, AMAT, CANON-ANELVA, ... Tohoku University, IMEC

Switching current versus switching speed

N. Ohshima *et al.*, 76th JSAP fall meeting, 14p-2J-8.

Background Write

T. Ohsawa et al., Symp. VLSI Circuits, pp. C110-C111, June 2013. @Endoh Gr. of Tohoku Univ.

Ternary CAM Cell

Area, Activity and Standby → Low Power

3 terminal device

Spin-Orbit Switching for SOT-MRAM

Spin-Orbit Torque (SOT) switching

In-plane current → Spin accumulation (through SOI)
Accumulated spin → Torque (=Spin Orbit Torque; SOT)
Torque → Magnetization switching

Experiment

(Co/Ni)/(Pt/Mn) SOT Device

Change in R_H varies gradually with I_{MAX}.
= Magnetization state can be controlled in an analogue manner by the I_{CH}.

... Function of synapse \rightarrow Neuromorphic computing (AI)

S. Fukami et al., Nature Mater. 15, 535 (2016).

Applied Physics Express 10, 013007 (2017)

https://doi.org/10.7567/APEX.10.013007

Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

William A. Borders¹, Hisanao Akima^{1*}, Shunsuke Fukami^{1,2,3,4*}, Satoshi Moriya¹, Shouta Kurihara¹, Yoshihiko Horio¹, Shigeo Sato¹, and Hideo Ohno^{1,2,3,4,5}

Memorized patterns

Input patterns (example)

Result for 100 trials	
Synaptic weight	Mean direction cosine
Ideal	0.905
Before learning	0.601
After learning	0.852

Recovery of direction cosine confirmed.

Difference from ideal value is due to variation of dynamic range

Non-volatile CMOS VLSIs with spintronics

600MHz MTJ/CMOS Latch (Fastest nonvolatile latch) (IEDM 2011)

Nonvolatile TCAM (Most compact TCAM cell, 4T-2MTJ) (VLSI 2011)

1Mb Array Three Terminal **DW** Cell (**High endurance**) (VLSI 2012)

First Auto Design Tool for Spintronics CMOS (2011)

Nonvolatile FPGA with TSV (First 3D Spintronics CMOS Processor) (VLSI 2012)

Nonvolatile GPU (Largest Scale Spintronics Random Logic 500kgate/chip) (ISSCC 2013)

1.5nsec / 1Mbit Embedded MRAM

Nonvolatile microcomputer (First nonvolatile microcomputer) (ISSCC 2014)

On 300 mm wafers

Development framework for spintronics devices

Paradigm Shift by Spintronics

